
APPLYING THE BORSUK-ULAM THEOREM

AKASH DHIRAJ AND SIDHANTH HOLALKERE

Abstract. This writeup acts as a sketch of a presentation on topological combinatorics
given for Math 2240 at Cornell. We hope to present one potential answer to the question
of “why topology?” by connecting two seemingly disparate areas of mathematics: combina-
torics (where we work with the discrete) and topology (where we work with the continuous).

For the sake avoiding repetition and our own carelessness, assume all maps are continuous
unless stated otherwise.

1. Borsuk-Ulam & Alternate Formulations

Naturally, let’s start with vocab.

Definition 1.1. The n-sphere Sn is the subset

{x ∈ Rn+1 | |x| = 1}
of Rn+1. Similarly, Bn is the unit ball centered around 0, i.e. {x ∈ Rn | |x| ≤ 1}.

Definition 1.2. Two points x,y ∈ Sn are antipodal if x = −y, i.e. they’re on diametrically
opposite ends of the sphere. A map f : Sn → X is antipodal (or odd) if f(−x) = −f(x).

Note that the superscripts of Sn and Bn denote the dimensions of our sets, not the dimen-
sion of the space they live in. I.e. the boundary of Bn is Sn−1, not Sn.

Theorem 1.3 (Borsuk-Ulam). Given a continuous map f : Sn → Rn, f identifies two
antipodal points: i.e. ∃x ∈ Sn such that f(x) = f(−x).

While originally formualted by Stanislaw Ulam, the first proof of Theorem 1.3 was given
by Karol Borsuk. Since then Borsuk-Ulam has found a number of equivalent formulations,
proofs, and applications both at the heart and entirely away from topology. Ultimately, we
only hope to present of small slice of this.

Example 1.4. The one dimension case is boils down to IVT. For f : S1 → R, consider
F (x) = f(x) − f(−x). Notice that our problem reduces to looking for the zeros of F .
Now, pick some x ∈ S1. If F (x) = 0, we’re done. Otherwise, F (x) and F (−x) have
differing signs by the antipodality of F . Hence, IVT gives the existence of y ∈ S1 such that
F (y) = 0 =⇒ f(y) = f(−y).

By law, all talks about Borsuk-Ulam must present the following example.

Example 1.5. Since temprature and pressure vary continuously across the earth, mapping
each place to it’s temprature-pressure pair on the plane gives a map f : S2 → R2. Hence,
there exists two antipodal points on the earth with the same temprature and pressure.

Let’s see some equivalent forms!
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Theorem 1.6 (Equivalent Formulations). For n ≥ 0, the following are equivalent and true:

(1) Borusk-Ulam, Theorem 1.3.
(2) For antipodal f : Sn → Rn, there exists x ∈ Sn such that f(x) = 0.
(3) There does not exist an antipodal map f : Sn → Sn−1.
(4) There does not exist f : Bn → Sn−1 that is antipodal on the boundary.
(5) For any cover F1, . . . , Fn+1 of the sphere Sn by n+1 closed sets, there is at least one

set containing a pair of antipodal points.
(6) For any cover U1, . . . , Un+1 of the sphere Sn by n+ 1 open sets, there is at least one

set containing a pair of antipodal points.

Proof. We’ll proceed by (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4).

(1) =⇒ (2) For antipodal f , there exists x such that

f(x) = f(−x) = −f(x) =⇒ f(x) = 0.

(2) =⇒ (1) For continuous f , F (x) = f(x)− f(−x) is antipodal so there exists x such that

F (x) = 0 =⇒ f(x) = −f(−x).

(2) =⇒ (3) (Contrapositive) An antipodal mapping Sn → Sn−1 is a nowhere zero antipodal map-
ping Sn → Rn

(3) =⇒ (2) (Contrapositive) If f : Sn → Rn is antipodal and nowhere zero, then g : Sn → Sn−1

defined by g(x) = f(x)/∥f(x)∥ is an antipodal mapping.
(4) =⇒ (3) (Contrapositive)Let π(x1, . . . , xn+1) 7→ (x1, . . . , xn) be a homeomorphism from the

upper hemisphere U of Sn to Bn. If we had an antipodal mapping f : Sn → Sn−1,
then g : Bn → Sn−1 defined by g(x) = f(π−1(x)) is antipodal on the boundary of Bn.

(3) =⇒ (4) (Contrapositive) Let g : Bn → Sn−1 be antipodal. Then for x ∈ U let f(x) = g(π(x))
and f(−x) = −g(π(x)). This makes f an antipodal map from Sn → Sn−1

□

Finally, we’ll prove the n = 2 case. While the higher dimensional cases aren’t excessively
technical, we’ll skip it to stay within time. See [2] for the full proof.

Proof of Borsuk-Ulam for n = 2. For continuous f : S2 → R2, let g(x) = f(x) − f(−x).
Borsuk-Ulam is then equivalent to finding a zero of g. Observe that g(−x) = −g(x). This
means that antipodal points are reflections across the origin. Pick p on the equator. If
g(p) = 0, we’re done. Otherwise, we observe the image of g on the equator. This path
encloses the origin in R2. As we continuously deform the equatorial path towards the north
pole, it continuously deforms to a point: the value of g at the north pole. This means that
at some point the image of g on the path must have intersected the origin, as required. □

An easy yet powerful consequence of Borsuk-Ulam is the Brouwer fixed point theorem:

Theorem 1.7 (Brouwer Fixed Point). For any convex compact K ⊆ Rn, a map K → K
has a fixed point, i.e. ∃k ∈ K such that f(k) = k.

Brouwer Fixed Point Proof. It suffices to prove the result for Bn since K ∼= Bn for some n.
Suppose f : Bn → Bn has no fixed point. Then, construct g : Bn → Sn−1 by setting g(x) to
the intersection of the ray from f(x) to x with Sn−1. Since g is continuous and antipodal on
the boundary (in fact, it’s the identity), we’re done. □
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2. Hex Game

The game of Hex is played between two players, say Red and Green. Each of them takes
turns coloring a finite hexagonal grid. After all hexagons are colored, Red wins if there’s a
red path connecting the top and bottom, and Green wins if there’s a green path connecting
the left and right.

Remark. Play a game after introducing Hex to give a feel for the problem.

Theorem 2.1. Hex can never end in a tie.

The presence of hexagons muddles things. Convert our hexagonal tiling into a graph by
changing the hexagons to nodes and drawing edges between adjacent hexagons.

Proof. We can’t have both Red and Green win. Then we’d have green and red paths cutting
into each other. Suppose they both lose. Call GL the set of green nodes connecting to the left
edge by a path of green. Call GR the green nodes that don’t have this property. Similarly,
construct RB for reds connecting to the bottom and RT for those that don’t. Then, we’ll
make the make the map f from our board to itself such that

f(v) =


v + e1 v ∈ GL

v − e1 v ∈ GR

v + e2 v ∈ RB

v − e2 v ∈ RU

,

where e1 and e2 rightward and upward motion by one unit respectively. f(v) stays on the
board because we’re assuming a draw. For x within triangles formed by v1, v2, v3, there exists
reals x1, x2, x3 > 0 such that x =

∑
xivi and

∑
xi = 1. We’ll set f(x) =

∑
xif(vi). Since f

is continuous, Theorem 1.7 gives a fixed point x =
∑

xivi. Let f(vi) = ϵi. Then,
∑

xiϵi = 0,
but this would imply ϵi = −ϵj for some i, j, a contradiction since GL and RB can’t connect
to GR and RU respectively. □

3. Fair Division

Suppose you and a friend steal an open necklace, engraved with m precious stones. There
are d kinds of stones (labelled 1, . . . , d), an even number of each kind. Neither you nor your
co-conspirator know the values of the different stone types. Hence, you decide to split the
stones between each of you such that you both have the same number of jewels of each kind.

A A A

S S

Figure 1. Example necklace and cut: segments labelled A go to Akash and
those labelled S go to. Our necklace has 14 stones of 4 types and was split
using 4 cuts.

Instead of removing the individual stones one by one, you decide to split the jewels by
making as few cuts as possible to the necklace, divvying out the remaining strands between
yourselves.
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Theorem 3.1. The minimal number of cuts needed is at most d.

Proof. At its current state, there isn’t any good way to apply Borsuk-Ulam on our puzzle.
Let’s change that! We’ll consider the interval [0,m] as our neckalce. Break [0,m] into the
union of subintervals

m−2⋃
k=0

[k, k + 1) ∪ [m− 1,m] .

The kth stone corresponds to the kth subinterval. Then, define characteristic functions for
the stones as fi : [0,m] → {0, 1} for i ∈ [d] such that

fi(x) =

{
1 x ∈ [k − 1, k) and the kth stone is of type i

0 otherwise
.

Fix 0 = z0 ≤ z1 ≤ z2 ≤ · · · ≤ zd ≤ m = zd+1 to act as the cuts on our string. If we wish
to assign the part [zi, zi−1] (i = 1, . . . , d + 1) to the first thief, set xi = (

√
zi − zi−1) /m and

xi = − (
√
zi − zi−1) /m otherwise. The tupple (x1, x2, . . . , xd+1) ∈ Sd encodes a cut of the

necklace. Noting that zj =
∑j

i=1 m
2x2

i , consider the continuous map

(x1, x2, . . . , xd+1) →

(
d+1∑
j=1

sign(xj)

∫
[zj ,zj−1]

f1(x) dx, . . . ,
d+1∑
j=1

sign(xj)

∫
[zj ,zj−1]

fd(x) dx

)
.

Since f is antipodal, Theorems 1.3 and 1.6 tell us ∃x ∈ Sn such that f(x) = 0. The cut
associated x is a fair division.

However, we might run into a problem translating this back into the discrete case! What
if some zi associated with x lies in (k, k + 1) for some k ∈ Z? (I.e. we cut partially into one
of the jewels.) Given a non-integral cut subdividing a stone of type i, where a portion of
stone i is assigned to the first thief, we know our cut is either unnecessary or there exists at
least one other partial cut into stones of type i assigned to thief one since the sums of lengths
of stone i intervals is an integer. In the latter case, we can move the first “non-integral” cut
to the right and the remaining to the left, without changing the loot for each thief. □

One might push this further by asking of the case when we have m thieves and k jewels.
Let c(m, k) denote the minimal numbers of cuts that always suffice to split the jewels among
the k thieves. If all jewels of the same color are kept together, then we know we need at
most (m− 1)k cuts, i.e. c(m, k) ≥ (m− 1)k. In fact, this is always sufficient.

Theorem 3.2. c(m, k) = (m− 1)k.

Proof sketch of m = 2j case. Repeatedly apply Theorem 3.1. Put thieves into two groups of
size 2j−1 and split the necklace between the two groups. Then, by induction, you can split
the necklace among all the thieves. □

A full proof can be found in [1] along with more necklace related generalizations.
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